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ABSTRACT
Traditional, empirical ground-motion models (GMMs) are developed by prescribing a func-
tional form between predictive parameters and ground-motion intensity measures.
Machine-learning techniques may serve as a fully data-driven alternative to widely used
regression techniques, as they do not require explicitly defining these relationships.
Although, machine-learning methods offer a nonparametric alternative to regression
methods, there are few studies that develop and assess performance of traditional versus
machine-learning GMMs side by side. We compare the performance and behavior of these
two approaches: a mixed-effects maximum-likelihood (MEML) model and a feed-forward
artificial neural network (ANN). We develop and train both models on the same dataset
from southern California. We subsequently test both models on a dataset from the 2019
Ridgecrest sequence, in a new region and on magnitudes outside the range of the training
dataset, to examine model portability. Our models estimate horizontal peak ground accel-
eration, and the input parameters include moment magnitude (M) and hypocentral dis-
tance (Rhyp), and some include a site parameter, either VS30 or κ0.We find that, with
our small set of input parameters, the ANN generally shows more site-specific predictions
than the MEML model with more variation between sites, and, performs better than their
corresponding MEML model, when applied “blind” to our testing dataset (in which the
MEML random effects cannot be considered). Although, previous studies have found that
κ0 may be a better predictor of site effects than VS30, we found similar performance, sug-
gesting that including a site parameter may be more important than the physical meaning
of the parameter. Finally, when applying our models to our Ridgecrest dataset, we find
that both methods perform well; however, the MEML models perform better with the
new dataset than the ANN models, suggesting that future applications of ANN models
may need to consider how to accommodate model portability.

KEY POINTS
• We compare a regression method with a machine-learn-

ing method for developing ground-motion models.
• An artificial neural network performed better when a pri-

ori information was missing, but was not as portable.

• Machine-learning methods offer a promising, nonpara-
metric approach to ground-motion prediction.

Supplemental Material

INTRODUCTION
Empirical ground-motion models (GMMs) are one of the key
components of seismic hazard assessment. Traditional models
are developed by regressing existing seismic observations to
obtain coefficients for a prescribed functional form, describing
the relationship between ground-motion intensity measures

and other earthquake parameters. Regression models have tradi-
tionally relied on an “average” regional or global physical
description, for the functional form, along with observational
amplification terms (i.e., for site effects). These models can
include a large number of coefficients, and, as the number of
dependent variables increases, the regression process becomes
more complicated, and the risk of overfitting becomes greater.
Recently, the availability of larger datasets allows for data-driven,
region-specific, fully nonergodic, and nonparametric models
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(Douglas and Edwards, 2016; Landwehr et al., 2016; Kuehn
et al., 2019).

In recent years, machine-learning methods have become
more common in seismology, for a variety of applications from
earthquake phase picking to seismic tomography (see Kong et al.,
2018 for a recent review). Artificial neural networks (ANNs)
have been used in developing a nonparametric, data-driven alter-
native to regression GMMs. Unlike traditional regression meth-
ods, machine learning allows for fully nonparameterized models,
without having to specify complex physical relationships, or fix
parameters. Although, machine-learning methods are often con-
sidered to be “black box” algorithms, they are helpful in inform-
ing human understanding of relationships between input
parameters and ground motions. Machine-learning techniques,
such as ANNs, have been used to predict peak ground motions
with data from western North America (Emami et al., 1996;
Trugman and Shearer, 2018), the Next Generation Attenuation
of Ground Motion (NGA) database (Alavi and Gandomi, 2011;
Aagaard, 2017; Dhanya and Raghukanth, 2018), Europe (Derras
et al., 2014), Japan (Derras et al., 2012), central and eastern
North America (Khosravikia et al., 2018), and Northwest
Turkey (Günaydın and Günaydın, 2008). Although, many of
these papers compare their ANNGMMs to existing GMMs, they
do not develop and compare their ANN model with a regression
GMM developed with the exact same dataset.

The main goal of this work is to compare the performance
and behavior of two methods of creating GMMs: a more tradi-
tional, regression-based mixed-effects maximum-likelihood
(MEML) method and a feed-forward neural network (ANN)
method. Both models are simple, and created with the same

input parameters and developed and tested with the same data-
sets. With both methods, we create models with three sets of
input parameters. All sets include moment magnitude (M)
and hypocentral distance (Rhyp). In some cases, we include a site
parameter (VS30 or κ0), to test the efficacy of these parameters
and to compare our ANN models with MEML models formu-
lated both with and without a site parameter. The differences and
similarities between models and methods can elucidate re-
gional differences in observed and predicted ground motions,
and inform future region-specific models.

We also test our models with an independent dataset of
main events and aftershocks from the Ridgecrest sequence.
We do so to evaluate the relatability of our models with unseen
events and stations and in a new region of southern California,
as well as data leakage that may be present in our original data-
set and models.

DATA AND METHODS
We create our models using the same dataset from southern
California, to directly compare the two methods, and sub-
sequently evaluate the models on unseen events and stations
with a dataset from the 2019 Ridgecrest sequence. Our overall

(a) (b)

Figure 1. Study regions with event locations (dots), stations (triangles)
labeled with station name, and the U.S. Geological Survey (USGS)
mapped Holocene to Latest Pleistocene faults (lines) (U.S. Geological Survey
[USGS], 2017); (a) main study region; (b) Ridgecrest region. Stars on the
inset globe show the two regions. The color version of this figure is available
only in the electronic edition.

2 • Bulletin of the Seismological Society of America www.bssaonline.org Volume XX Number XX – 2021

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/doi/10.1785/0120200200/5246052/bssa-2020200.1.pdf
by vsahakian 
on 09 March 2021



southern California dataset is from a previous paper
(Klimasewski et al., 2019) in which we calculated κ0 for the
16 stations. This first dataset consists of 3357 crustal earth-
quakes M 2.8–5.7 recorded on 16 stations in southern
California for a total of 52,297 records (Figs. 1 and 2). Our
stations include 13 ANZA network stations: BZN, CPE, CRY,
FRD, KNW, LVA2, PFO, RDM, SMER, SND, SOL, TRO,
WMC, and three Southern California Seismic Network (CI)
network stations: ERR, PMD, and SWS (California Institute
of Technology [Caltech], 1926; Berger et al., 1984; Vernon,
1989; Southern California Earthquake Data Center [SCEDC],
2013). Because of the time period of our catalog, many of our
events are aftershocks of the 2010 M 7.2 El Mayor–Cucapah
earthquake (Wei et al., 2011). Although, our data consist of
small-magnitude events, they can help us understand
region-specific seismology (Baltay et al., 2017; Sahakian et al.,
2019). This is because there are no effects from a globally
determined set of coefficients that may not represent physical
properties in this region or complicated source effects from
large ruptures.

We use the horizontal components of broadband velocity
seismograms, and, cut each record to start 2 s before and
60 s after the theoretical shear-wave arrival, to capture the
shear-wave signal, calculated using event time, propagation
distance, and a regional average crustal velocity of 3:5 km=s
occurring in July 2019 with hypocenter latitude between 35°
and 36.25° N and −118.9° and −116.5° E (∼2400 earthquakes),
including the July 2019M 6.4 andM 7.1 events (Goldberg et al.,
2020). Similar to the southern California dataset, we convert
reportedML toM for events smaller thanM 3.5, using the rela-
tionship from Ross et al. (2016). We chose four Southern
California Seismic Network (CI) network stations MWC,
CWC, GMR, and GSC, with measured VS30. The records
are preprocessed in the same manner of our main study data.
We calculate a simple signal-to-noise ratio (SNR) and select all
records with SNR > 3. We set a maximum Rhyp of 235 km
(maximum of study data). Site VS30 values are from Yong et al.

(2012), and κ0 is computed from VS30 with the relationship
from Van Houtte et al. (2011, their equation 6). Because we
do not have independently calculated κ0 for these four stations,
the Ridgecrest dataset is not ideal for testing our κ0 models;
however, it should be representative to other two models,
because we do have measured values of VS30. Our final
Ridgecrest dataset consists of 1335 events and a total of
1894 records.

Our models predict PGA as our dependent variable. We
consider the input parameters: moment magnitude (M), hypo-
central distance (Rhyp), and either VS30, defined as the time-
averaged shear-wave velocity in the top 30 m of the crust,
or κ0, the near-site attenuation of high-frequency energy
(Anderson and Hough, 1984). We convert events with local
magnitude to moment magnitude using Ross et al. (2016).
Site effects on PGA are often parameterized by VS30; how-
ever, some studies have found that the inclusion of VS30

does not always help predict ground motions (Gallipoli and
Mucciarelli, 2009; Yong et al., 2012; Derras et al., 2016, 2017;
Thompson and Wald, 2016; Sahakian et al., 2018; Klimasewski
et al., 2019). κ0, the near-site attenuation of high-frequency
energy (Anderson and Hough, 1984), has been suggested as
a predictor of site effects on ground motions (Laurendeau et al.,
2013; van Houtte et al., 2014). For this reason, we test sets of
input parameters with no site term, a VS30 site term, and a κ0
site term. VS30 for each site is reported by Sahakian et al.
(2018), from the multichannel analysis of surface waves and
terrain-based proxy method from Yong et al. (2012). Only four
of our 16 stations have a measured VS30: ERR, PFO, PMD, and
SWS. κ0 is calculated for each site with a modified version of
the Andrews (1986) spectral decomposition method from
Klimasewski et al. (2019).

Figure 2. (a) Magnitude versus distance, (b) peak ground acceleration (PGA)
versus distance, and (c) magnitude versus PGA for the entire dataset. The
color version of this figure is available only in the electronic edition.
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ANNs are created by training the model on a subset of the
dataset—the training data. The model hyperparameters and
architecture are tuned using a separate subset of the data—
the validation data. The final, tuned models are evaluated with
the test data. Unlike machine-learning models, regression mod-
els are typically created and evaluated with one dataset, leading
to possible bias in the model. In this study, we use the same
training, validation, and testing data with both methods. We
randomly split all of our events into 60% training, 20% valida-
tion, and 20% testing data, using the same random split for each
method and set of input parameters. Splitting our data by event
prevents leakage of individual event information between the
three data splits. With only 16 stations in our dataset, preventing
station leakage is difficult, so we include records from all 16 sta-
tions in each split. Each model, regardless of method, is created
using the training data, tuned with the validation data, and
evaluated with the testing data.

MEML method
Our regression method is an MEML technique similar to
Sahakian et al. (2018), which we justify as a simple but good
approximation because of similarity between datasets and the
small-magnitude nature of our events. The functional form has
either six coefficients (a1–a6) or five coefficients, excluding the
VS30 term (a1–a5):

EQ-TARGET;temp:intralink-;df1;53;419

f �M;Rhyp�ij � a1 � a2M � a3�8:5 −M�2

� a4 ln�Rhyp� � a5 � a6

�
VS30

V ref

�
: �1�

For our set of inputs with κ0, we chose the functional form
of the κ0 term after Van Houtte et al. (2011) and Laurendeau
et al. (2013). We also tested both a κ0 scaling linearly with ln
(PGA) and ln(κ0) scaling with ln(PGA), by comparing the
standard deviation of residuals on the validation data without
the random site term added for various reference κ0 values
(0.02, 0.03, 0.04, 0.05, and 0.06). We found that all models
had similar fits, but the best model had a sixth term similar
to a reference VS30 term:

EQ-TARGET;temp:intralink-;df2;53;224a6 ln

�
κ0
κref

�
; κref � 0:06: �2�

The MEML model is a combination of the fixed effects
(f �M;Rrup�ij� (effects and relationships that exist regardless
of the dataset selection), random effects (δEi � δSj) (effects
that exist due to bias from dataset selection), and aleatory
residuals (δWij). Here, we include the event and site as random
effects, for any event i and any site j:

EQ-TARGET;temp:intralink-;df3;53;93yij � f �M;Rrup� � δEi � δSj � δWij: �3�

To sufficiently compare methods, we fit the random effects
(event and site terms) to the training data, and add the event and
site terms to the function. When comparing the validation and
testing data, we report our results, both without including any
random effects, as well as by adding the site term. This assumes
that, in an unseen dataset, event terms would be unknown but
site terms might be known a priori. However, if we were to apply
the model to different sites or a different geographic region, we
would not add either event terms or site terms.

Sahakian et al. (2018) created a five-coefficient and six-
coefficient models for small-magnitude earthquakes in
southern California (different than our dataset, but with some
overlap). In some of their models, coefficients are explored and
prescribed to prevent unrealistic values that come from corre-
lated terms, such as a4 and a5. They found an absence of cor-
relation between VS30 and site terms for all of their models,
and, therefore, chose a five-coefficient model with no VS30

term and a4 set to −1.2 as their preferred model.
We create both five- and six-coefficient models with no pre-

scribed coefficients, as our initial coefficient values were realistic
(Table S1, available in the supplemental material to this article).
To verify, however, we created models prescribing a4 to both −1
and −1.2, and found model fit and behavior almost identical
between models with prescribed a4 and those without. Our
six-coefficient models include either VS30 or κ0 as the a6 param-
eter. We label our five-coefficient as MEMLns. We label our
six-coefficient models with either MEMLVS30 and MEMLκ0.

ANN method
Over the past decade, ANNs have gained popularity as an
alternative to regression methods of creating GMMs (Alavi
and Gandomi, 2011; Derras et al., 2012, 2014; Aagaard, 2017;
Dhanya and Raghukanth, 2018; Khosravikia et al., 2018).
An ANN is a collection of weights and biases that represent
the connections between neurons that connect an input
layer of dependent variables and an output layer of inde-
pendent variables. The weights and biases are initialized
as small values around zero (e.g., Glorot initialization using
a Gaussian distribution centered around zero), and then
refined during training using optimizers (such as gradient
descent). The contribution from each node is found with iter-
ative forward and backpropagation of error (Geron, 2017).
The process continues for a number of epochs until the opti-
mal configuration of weights and biases is found. We use
keras with the tensorflow backend to build our models
(Abadi et al., 2015). Features are often normalized or stand-
ardized so that the scale and distribution of each feature is
similar. We use the standard scaler method from Scikit-learn
to standardize our input features (Pedregosa et al., 2011). The
mean of each feature column is removed and is scaled by unit
variance as fit to the training data. Our standardized input
features are in linear, and the model predicts PGA�g� in natu-
ral log space.
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After an initial grid search with a subset of model layer and
unit architectures, we determined �x� � tanh�x� was the best
activation function for the input layer as well as the hidden layers.
We use a linear activation function for the output layer as is
common for regression models. We use the gradient descent
optimizer with a learning rate of 0.01. We use a batch size of
32 to speed up training and stabilize the model. The model is
compiled with a mean squared error loss function but evaluated
with a mean absolute error loss metric, because we look at resid-
uals (not residuals squared). We choose this in an attempt to
have the best model fit possible. We test models with one, two,
and three hidden layers, to capture complex source, path, and site
phenomena. We prevent overtraining by comparing training
error with validation error and ensuring that as the training error
decreases the validation error does as well.

We choose our best models using the Akaike information
criterion (AIC) computed on the validation data (equation 3),
in which n is the number of data points, m is the number of
model hyperparameters (weights and biases), and mse is the
mean squared error of validation data (Derras et al., 2012):

EQ-TARGET;temp:intralink-;df4;41;198AIC � n × �mse� � 2 ×m: �4�

The AIC represents the trade-off between model fit and
simplicity. Using the AIC ensures that between two models
with similar fits, the simpler model is preferred over the more
complex model.

We choose our number of hidden layers and hidden units
per layer with a hyperparameter grid search. We search models
with one, two, and three hidden layers, with between 1 and 14
units per layer for a total of 326 models for each set of input

parameters. After the initial model runs, we choose the number
of epochs by finding the point when validation error reaches an
asymptote. We choose 200 epochs for our models with no site
and VS30, and 400 epochs for our model with κ0. Compared
with other GMMs, this is a large number of epochs, but we
found that our deeper models required more training, and
we ensured that validation error was not increasing.

Figure 3 shows that for our model with no site term, the
standard deviation of residuals plateaus with more than
∼100 hyperparameters, while the AIC plateaus around ∼140
hyperparameters. The lowest AIC model has three layers of
eight, six, and eight hidden units, and we label it ANNns. The
model with VS30 shows standard deviations of residuals that
plateau around 0.87 and an AIC that also reaches a minimum
value around 100 hyperparameters (Fig. S6a,d). The final VS30

model, ANNVS30, has three layers with 10, 4, and 3 hidden
units. The κ0 model has a standard deviation of residuals that
decreases with the number of hyperparameters to ∼0:82 and an
AIC that reaches a minimum around 100 hyperparameters and
then slightly increases past ∼300 hyperparameters (Fig. S7a,d).
The final κ0 model, ANNκ0, has two layers of size 12 and
10 units.

Figure 3. Details of the no site term models. (a,d) Akaike information cri-
terion (AIC) and standard deviation of residuals for the validation data in the
hyperparameter grid search for artificial neural network (ANN) model,
(b) residuals versus distance of testing data for mixed-effects maximum-
likelihood (MEML) model, (c) residuals versus distance of testing data for
ANN model, (e) residuals versus magnitude of testing data for MEML model,
and (f) residuals versus magnitude of testing data for ANN model. The color
version of this figure is available only in the electronic edition.
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All ANN models implement fivefold cross validation. The
training data are split into five subsets by event, and one
instance of the model (submodel) is trained for each subset.
For each of the five submodels, four of the data splits are used
for training, and, the last split is used for validation, with the
validation set changing with each run. We find that the sub-
models perform similarly on each data split, showing that our
data folds and submodels are relatively consistent. The final
model is a generalized model created by averaging the five
submodel predictions to minimize overfitting (Diamantidis
et al., 2000; Baykan and Yılmaz et al., 2011).

RESULTS
We compare the standard deviation of residuals between
observed and predicted ground motions of the test data for
all models (Table 1). Residuals are in natural log space. The
distribution of residuals shows a normal shape and are cen-
tered around zero for all models (Fig. S5). The residuals show
no trend with magnitude or distance (Fig. 3, and Figs. S6
and S7).

Performance and fit of the MEML models
For the southern California dataset, we find that the three
MEML models have very similar standard deviations of resid-
uals for all data splits for fixed effects only, without the random-
effect site term added (MEMLns : σ � 0:9680, MEMLVS30 : σ �
0:9615, MEMLκ0 : σ � 0:9673). With the random-effect site
term, the VS30 and kappa models are nearly identical, with
the only difference after four significant digits (MEMLns : σ �
0:8340, MEMLVS30 : σ � 0:8261, MEMLκ0 : σ � 0:8261).

Performance and fit of ANN models
The uncertainty of the ANN model developed and tested on the
southern California dataset shows more variation between sets
of input parameters than the nearly identical MEML models.
We find that ANNns has a larger standard deviation of residuals
than the two ANNs, including a site parameter, and ANNκ0

has slightly better fit than ANNVS30 (ANNns : σ � 0:9547,
ANNVS30 : σ � 0:8455, ANNκ0 : σ � 0:8137).

Performance and fit between methods
ANNns has similar performance to the MEML models without
the random-effect site term added to the residuals, but with
the random-effect site term considered in the residuals, the
MEML model has a better fit (ANNns : σ � 0:9547 vs.
MEMLns : σ � 0:8340). ANNVS30 and ANNκ0 have signifi-
cantly better performance than the MEMLVS30 and MEMLκ0
models without the random-effect site term. ANNVS30 and
ANNκ0 have similar uncertainty to the MEML models, includ-
ing the random-effect site terms (ANNVS30 : σ � 0:8455,
ANNκ0 : σ � 0:8137, MEMLVS30 : σ � 0:8261, MEMLκ0 :
σ � 0:8261).

Although, the MEML method results in a coefficient for
each variable parameterization, the ANN model is not only
nonparametric and allows for much more freedom in the
underlying relationships between parameters, but is also more
complex and difficult for human interpretation. We examine
the behavior of the ANN and MEML methods by plotting both
GMM curves against distance and magnitude for each site and
set of input parameters. Here, we look, in detail, at two sites;
WMC located in the center of the Anza network, which rep-
resents a site in our dataset with a relatively smooth model in
distance and magnitude, and SWS—a Southern California
Seismic Network (CI) station located south of the Salton
Sea on Superstition Mountain, which shows anomalous site
behavior compared with other sites (Figs. 4 and 5).

In general, the ANNns curves show larger deviation from
the MEML models, because, without a term to differentiate
between sites, they are the same for every site, whereas the
MEMLns curves are linear with a constant shift up or down
from the random-effects site residual (Figs. 4b and 5b). The
ANNns curves show changes in slope at various distances and,
to some degree, magnitudes (Figs. 4 and 5). From 40–60 km
and 110–140 km, the smaller magnitude ANNns curves show a
shallower slope than the MEML curves. At other distances,
79–100 km and 140–200 km, the ANNns curves show a steeper
slope than the MEMLns curves.

The ANN models with κ0 or VS30 show variations with each
site. Because they contain a parameter to differentiate between

TABLE 1
Mixed-Effects Maximum-Likelihood Model Performance, Standard Deviation of Residuals between Observed and Predicted
Peak Ground Acceleration for Testing Data

Model Training Training� δEi � δSj Validation Validation� δSj Testing Testing� δSj

Five coefficients 0.9533 0.6010 0.9925 0.8595 0.9680 0.8340
Six-coefficient VS30 0.9472 0.5905 0.9846 0.8501 0.9615 0.8261
Six-coefficient κ0 0.9523 0.5905 0.9922 0.8501 0.9673 0.8261
ANN no site 0.9374 0.9810 0.9547
ANN VS30 0.8251 0.8715 0.8455
ANN κ0 0.7876 0.8347 0.8137

ANN, artificial neural network.
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sites, the neural network is essentially able to create a different
model with varying relationships between parameters for each
site. For WMC, both ANNVS30 and ANNκ0 (Fig. 4c,d) follow
the MEML curves fairly well. The larger deviations are at the
smallest and largest distances where there are limited data.

SWS has a group of anomalously low ground motions from
25 to 100 km (101.4 to 102.0) from events from a range of
azimuths, but, particularly, a group of El Mayor–Cucapah
aftershocks. These low ground motions are not captured in
the MEML models or ANNns, but they are captured to some
extent in ANNVS30 and ANNκ0. The ANNκ0 curves show
strong deviation from MEMLκ0, with the distance curves dip-
ping steeply from about 20 to 50 km, and then either sloping
upward (M � 3:8, 4.3, 3.8) or flattening from about 50 to
160 km (M � 2:8, 3.3), with the exact distances varying slightly
with magnitude. At distances past 160 km, the curves slope
downward with similar slopes to MEMLκ0.

Site residuals versus κ0 and VS30
To understand the role of site parameters in our models, we
compare our three MEML site residuals to both site para-
meters (VS30 and κ0). We define site residuals for MEML mod-
els as the random-effect site term, δSj, for any site j. Sahakian
et al. (2018) found that none of their five- or six-coefficient

MEML models show a correlation between random-effect
site residuals and VS30. Similarly, we find that none of our
three MEML models show a correlation with VS30 (MEMLns :
R � 0:2018, six-coefficient MEMLVS30 : R � 0:0180,
MEMLκ0 : R � −0:2405) (Fig. S3). Although, a few studies
have implemented random effects into their ANN method,
to capture event and site residuals (Derras et al., 2014,
2016), we simply compute site residuals for the ANN models
as the average of the residuals for all records at a given
station, to represent its unmodeled contributions to ground
motions. The MEML random-effect site terms are inverted
for simultaneously with the model coefficients (fixed effects)
and are technically included in model predictions. The ANN
site residuals are not included in the predictions, because they
are calculated after the models are finalized and not during
the model development step, such as the random-effect

Figure 4. PGA versus distance and PGA versus magnitude for station WMC.
Observations of test data (points) and model predictions for various
magnitudes and distances with the MEML models (dashed lines) and ANNs
(solid lines). (a,d) with no site term, (b,e) with VS30 site term, and (c,f) and
with κ0 site term. The color version of this figure is available only in the
electronic edition.
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residuals. We also find no evidence of a correlation between
the average site residuals from our three ANN models
and VS30 (ANNns : R � −0:1959, ANNVS30 : R � −0:0192,
ANNκ0 : R � −0:3815) (Fig. S3).

Klimasewski et al. (2019) found a correlation between
five-coefficient site residuals of Sahakian et al. (2018) and
κ0. The correlation suggested that including κ0 could help
improve the model. However, for the site residuals computed
with our data, we see no correlation between κ0 and the
MEML site residuals (MEMLns : R � −0:0866, MEMLVS30 :
R � −0:1978, MEMLκ0 : R � −0:0070), which implies no
correlation between κ0 and each sites’ contributions to the
observed ground motion. We also see no correlation
between κ0 and any of the ANN models site residuals
(ANNns : R � −0:0857, ANNVS30 : R � −0:0293, ANNκ0 :
R � −0:0371) (Fig. S4).

Between ANN versus MEML models with the same input
parameters, we compare residuals per site (Fig. 6). We find
strong correlation between residuals from MEMLns and
ANNns. Residuals are nearly one-to-one (Fig. 6a: R � 0:9978,
p � 0:0000, power = 0.9612). Site residuals are quite consistent
for all three MEML models, but including a site input param-
eter to the ANN models results in a narrower distribution of
site residuals. The models with site parameters show site

residuals that are also correlated but less strongly (Fig. 6b,
ANNVS30 : R � 0:6292, p � 0:0090, power = 0.6531; Fig. 6c,
ANNκ0 : R � 0:8216, p � 0:0001, power = 0.8665).

Performance and fit of the models on Ridgecrest
testing data
We find that the MEML models perform very well with the
Ridgecrest earthquakes and aftershock dataset. All three
MEML models have better fit on the Ridgecrest dataset than
the study testing dataset (σRidge � ∼0:71). Figure 7 and
Figures S6 and S7 show histograms of both ANN and
MEML models on the testing data and Ridgecrest data.
ANNns demonstrates a better fit on Ridgecrest data than the
testing dataset (σRidge � 0:8195 vs. σTest � 9619). ANNVS30

exhibits a worse fit on Ridgecrest data than testing data
(σRidge � 1:1543 vs. σTest � 8556). ANNκ0 has a very similar

Figure 5. PGA versus distance and PGA versus magnitude for station SWS.
Observations of test data (points) and model predictions for various
magnitudes and distances with the MEML models (dashed lines) and ANNs
(solid lines). (a,d) With no site term, (b,e) with VS30 site term, and (c,f) with
κ0 site term. The color version of this figure is available only in the electronic
edition.
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fit on Ridgecrest data and testing data (σRidge � 8195 vs.
σTest � 8112). The residuals versus magnitude and distance
plots show some trends with distance, but it may be related
to only four stations, and each station has records from a nar-
row range of distances. The MEML residuals from the M 6.4
and M 7.1 earthquakes are centered around zero, whereas,
the ANN models have positive residuals, except for CWC
(Fig. 7g,h, and Figs. S6g,h and S7g,h). Because the ANN is
trained on smaller magnitude earthquakes, the model appears
to be underpredicting PGA for the larger earthquakes outside
the training domain. Finally, we find an average of zero for bins
of residuals for earthquakes of M < 3:5, indicating that the
local to moment magnitude conversion of Ross et al. (2016)
is sufficiently applicable in this region.

DISCUSSION
MEML versus ANN methods
We first compare, with regard to performance (standard
deviation), the MEML models with the ANN models with the
same input parameters. Between models with no site input
parameter, the MEML method performs much better than the
ANN. This is likely because the MEML includes the random-
effects site residual, whereas, the ANN has no way to differentiate
between sites. Interestingly, MEMLns without the site residuals
added (without considering the effects of the random-effect site
term when computing model residual standard deviations) has
very similar performance to the ANNns model (σ � 0:9680 and
σ � 0:9547; Table 1). ANNVS30 and ANNκ0 have significantly
smaller uncertainties than MEMLVS30 and MEMLκ0 without
the random-effect site terms included, but including the
random-effect site terms performance is comparable.

Next, we compare the resulting distributions of site resid-
uals, with respect to how well the ANN versus MEML methods
integrate site properties into their ground-motion estimations.
Site residuals between the two methods correlate well, bet-
ween models created with the same parameters (i.e., between
MEMLns and ANNns), but to varying degrees (Fig. 6a). The
random-effect site terms from MEMLns are very close in value

to the ANNns site residuals, despite being calculated differently.
Although, we add the random site term to the MEML predic-
tions, we do not add it to the ANN predictions. Between our
three MEML models, the distribution of site residuals is con-
sistent (see x-axis histograms in Fig. 6a–c). The site residuals
from MEMLVS30 have a narrower distribution than the
MEMLns and MEMLκ0 residuals (Fig. 6). The site residuals
resulting from MEMLκ0 are less correlated with the site resid-
uals from ANNκ0; site residuals between MEMLVS30 and
ANNVS30 are even less correlated. This indicates that including
VS30 captures some of the site effects on PGA so that the site
uncertainty is decreased for the ANN model, but the MEML
model stays the same. The MEML site residuals are systemati-
cally slightly higher than the ANN site residuals for the models
with VS30. MEMLκ0 site residuals correlate well with the
ANNκ0 site residuals, but follow less of a one-to-one trend
compared with the models with no site term.

Together, these observations indicate that without explicit
identification of the site within the ANN model (i.e., one-hot
encoding, Potdar et al., 2017), the ANN models learn relation-
ships between these site parameters and ground-motion effects.
This suggests that the nonparameterization in the ANN could be
promising for its predictive power, and, for better understanding
the relationship between site parameters and ground motions,
when compared with the current prescribed form between PGA,
and κ0 or VS30 (equations 1 and 2). However, with our relatively
small number of stations, the κ0 model may effectively be differ-
entiating between sites by unique κ0 values, instead of finding a
physical relationship between κ0 and site effects. The ANN
models are able to capture linear and nonlinear site effects,
whereas, the MEMLmodels must follow the prescribed relation-
ship ln(PGA) ∝ ln�VS30� or ln�κ0� (equation 1).

Figure 6. Comparing average residuals per site from ANN models and MEML
models for (a) models with no site term, (b) models with VS30, and
(c) models with κ0. The color version of this figure is available only in the
electronic edition.
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Performance with κ0 and VS30
Including an input site parameter greatly improves the ANN
models, but does not appreciably affect the fit of the MEML
model. However, there is no evidence of a correlation between
either input site terms and the site residuals for any of our
models (Figs. S3 and S4). This means that differentiating
between sites in the ANN is important, but that the physical
relationship given by a particular site parameter (VS30, κ0) in
the functional form is not well constrained or defined.

A previous study found that κ0 correlated well
(R � −0:6128, p-value = 0.0116, power = 0.6302) with
MEML site residuals (Klimasewski et al., 2019). Sites with
larger κ0 values generally had negative site residuals, indicating
that the more attenuating sites tended to have lower ground
motions than predicted, whereas, sites with smaller κ0 values
tended to have positive site residuals, indicating that the less
attenuating sites had larger observed ground motions that
predicted. The same site residuals showed no evidence of a
correlation with VS30 values, although, because most VS30

values for these sites are proxy values, they may not represent
the actual VS30 values at the sites.

The lack of a correlation between site residuals and bothVS30

and κ0 suggests that we may not have the correct parameteriza-
tion in the MEML model or that κ0 and VS30 are not important
in predicting for PGA in our dataset, but would be important to
Fourier amplitude spectra (FAS, Abrahamson and Bayless,
2018) or other independent ground-motion parameters.

Capturing region- and path-specific effects
In GMMs, the path is often represented only by geometric
spreading term and anelastic attenuation terms. Epistemic path
uncertainty is a significant contributor to overall uncertainty
(Lin et al., 2011; Kuehn et al., 2019). Fortunately, path effects

can be studied with data from small-magnitude events and
applied in the prediction of ground motions for larger magni-
tude events (Baltay et al., 2017; Abrahamson et al., 2019;
Sahakian et al., 2019). Capturing spatial variability in path
effects is important for nonergodic models. Deviations in the
ANN models from the MEML predictions communicate infor-
mation about potential path and site effects that are not captured
in the functional form of the MEMLmodel. As seen in Figures 3
and 5, our ANN models are very dataset specific; however, they
are not overtrained because the training, validation, and testing
data all show consistent fits. Our ANN GMMs are not models
that would be used in practice for hazard applications, because
they are specific to our narrow distribution of events and sta-
tions both in space and time. Figures 4 and 5 show that in
domains where we do not have a lot of data (large magnitudes
and close distances), model curves are not consistent. In
domains where we have many data points, such as El Mayor–
Cucapah aftershocks recorded on Anza stations (distances
∼112–140 km), we see shallower slopes between model-pre-
dicted PGA and distance in many of the ANN models. This
could be caused by a common source, path, or site effect.

Figure 7. Performance of the no site term models with the Ridgecrest test
data and comparison with study testing data. Histogram of residuals
between observed and predicted PGA for (a) study testing data with ANN no
site model, (b) Ridgecrest data with ANN no site model, (c) residuals versus
distance of Ridgecrest data for MEML no site term model, (d) residuals
versus distance of Ridgecrest data for ANN no site term model, (e) study
testing data with MEML with no site term model, (f) Ridgecrest data with
MEML with no site term model, (g) residuals versus magnitude of Ridgecrest
data for MEML no site term model, (h) residuals versus magnitude of
Ridgecrest data for ANN no site term model. The color version of this figure
is available only in the electronic edition.
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We seek to use the ANN models to (1) compare fit with the
more traditional regression-based MEML method and (2) har-
ness the complexities found in the ANN models to learn about
path- and site-specific effects in our study region, and their
potential contributions to developing nonergodic models.

The dip seen in the SWS curves (Fig. 5b,c) for the ANN
models with a site term is not seen at any other stations.
These low ground motions are seen in the training, validation,
and testing data. It is not obvious what causes these low ground
motions. SWS has an average VS30 (measured) and κ0.
Figure S11 shows all earthquakes recorded on SWS with
PGA less than 10−5 m=s2, with event-to-station distances
between 16 and 100 km. Most of the lower-than-expected
ground motions recorded on SWS are small-magnitude El
Mayor–Cucapah aftershocks. They are relatively shallow,
and most events are located at a less than 10 km depth
(Fig. S11). They could be due to ray paths traveling in shallow
metamorphosed ancient Lake Cahuilla and Gulf of California
rift sediments, with lower velocity, and/or more attenuating
(Hauksson and Shearer, 2006; Han et al., 2016; Sahakian et al.,
2016). Although, we do not further explore these observations,
we expect that they may be useful for informing studies that
seek to incorporate physical properties into fully nonergodic
GMMs (Baltay et al., 2017; Sahakian et al., 2019), for both seis-
mic hazard and earthquake early warning applications.

ANN and MEML on unseen Ridgecrest data
Although, our results have demonstrated that the ANN
appears to be a better model for our dataset, with respect to
model fit as well as representation of nonergodic behavior
not represented in the MEML model, several questions remain
regarding the model applicability to new regions with different
crustal properties, new stations (for which there were no ran-
dom-effect site term to include in estimating ground motion),
and earthquake magnitudes outside the original models’ range.
To test this, we evaluate our models on an independent dataset
of Ridgecrest earthquakes. For this dataset, we have no ran-
dom-effects terms in the MEML, because these are new events
and stations. We find that the MEML models have a better fit
than the ANNs, but ANNns and ANNκ0 perform well on the
new data. ANNVS30 has a worse fit than MEMLVS30. VS30 may
not accurately represent site effects for these four sites.
Interestingly, ANNκ0 has much better performance on the
new data than ANNVS30, despite the kappa values being a func-
tion of VS30.We note, however, that we apply hypocentral dis-
tance (Rhyp) instead of closest distance to rupture (Rrup) in our
original models. This was a valid assumption for the original,
small-magnitude southern California dataset; however, the
larger events in the Ridgecrest sequence do not behave as point
sources. The difference between Rhyp and Rrup is between 0.8%
and 11.7% difference for the M 6.4 earthquake and between
11.4% and 44.8% difference for the M 7.1 earthquake
(Goldberg et al., 2020). This distance assumption may alter

and bias our results in applying these models, and future stud-
ies should incorporate more representative distance metrics,
such as Rrup.

These results indicate that, although, the ANN models are
generally similar or outperform the MEML models on the
original training dataset, they may not be applicable in a
new region without additional constraints. For example, our
study has demonstrated that the ANN seems to learn more
complex, nonergodic path and site effects not represented in
the MEML functional form. However, when applied to a
new region, these original effects learned by the ANN are
no longer applicable. ANN models developed with a more bal-
anced dataset of stations and events may be more portable to
new regions. Although, advantageous for region-specific stud-
ies in areas with many seismic observations, an ANN approach
would likely be deficient for regions with a dearth of seismic
data to use in a training dataset. In these cases, an MEML
model may be preferred, or numerical simulations of earth-
quakes could be used to fill this “data gap” in an ANN.

CONCLUSION
This study compares two methods of creating GMMs for small-
magnitude earthquakes in southern California: (1) a more tradi-
tional, statistically based, maximum-likelihood mixed-effects
regression and (2) a machine-learning, nonparametric ANN.
This work shows that the methods perform similarly on
identical testing data, but that the ANN may learn more
detailed behavior without the need to predefine relationships
between parameters. When applied to an unseen dataset, the
MEML model generally outperforms the ANN model, indicat-
ing that the detailed regional behavior learned by the ANN
model is not applicable to new regions without additional
constraints.

Our models only include two or three input parameters, but
our results indicate that machine-learning methods will be
more effective for datasets with many more dependent param-
eters, particularly, those that are less physics based in their pre-
scribed functional form (i.e., faulting-type terms, hanging-wall
terms, and so on). Studies such as Derras et al. (2014) and
Aagaard (2017) show that including more input variables gen-
erally increases model performance. Unlike a regression model
in which the functional form and potential trade-offs must be
determined before include a new input parameter, it is easy to
add more parameters to an ANN model compared with a
regression method.

In the future, using one-hot encoding to differentiate
between sites may help illuminate and quantify the physical
basis that other site parameters contribute to predicted ground
motions, as well as expanding to larger databases with a
wider variety of magnitudes. Including further-dependent
parameters and intensity measures beyond PGA, such as
FAS, will also be important for evaluating the effectiveness
of machine-learning models (Abrahamson and Bayless, 2018).
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DATA AND RESOURCES
These waveform data are publicly available and posted by the Scripps
ANZA network on the Incorporated Research Institutions for
Seismology (IRIS) Data Management Center (Southern California
Earthquake Data Center [SCEDC], 2013) and by the Southern
California Seismic Network on the SCEDC (http://scedc.caltech
.edu) and accessed from a local server. The event catalog was created
with the U.S. Geological Survey (USGS) earthquake catalog website
(https://earthquake.usgs.gov/earthquakes/search/). The artificial
neural networks were built using keras with the tensorflow backend.
Software available from https://keras.io and tensorflow.org. Code for
this work is available on github, at https://github.com/aklimase/
GMM_ANN. Code for the mixed-effects maximum-likelihood
(MEML) models can be found in https://github.com/vSahakian/
grmpy/. All websites were last accessed in June 2017. The map in
Figure 1 was rendered using Generic Mapping Tools v.5.4.5 (GMT;
Wessel and Smith, 1998). The supplemental material contains a table
and figures showing details on model development, model residuals,
and the dataset. We also include two csv files, with the following infor-
mation for each record in the main study data and the test data: event
time, magnitude, station name and κ0 and VS30, hypocentral distance,
and peak ground acceleration (PGA).
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