
1.  Introduction
Slow slip events occur frequently on the shallow and deep extents of subduction megathrusts and on trans-
form faults throughout the world (e.g., Behr & Bürgmann, 2021). In slow slip events, the fault slip velocity is 
∼1 to 2 orders of magnitude above the background plate rate and orders of magnitude below typical earth-
quakes, hence slow slip has only a very weak seismic manifestation. Commonly, slow slip is accompanied 
by low-frequency earthquakes (LFEs). LFEs manifest as low-amplitude, emergent signals. P- and S-wave 
arrivals are sometimes visible in individual traces but are most apparent in waveform stacks (Figure 1a). 
LFEs are also depleted in high-frequency content relative to traditional earthquakes of similar size. This 
depletion could be due to slip speeds that are slower than typical earthquakes, attenuation along the path, or 
some combination of the two (Bostock et al., 2015, 2017; Hawthorne et al., 2019; Littel et al., 2018; Thomas 
et al., 2016).

LFEs are commonly identified using variations of a network cross-correlation approach or template match-
ing (e.g., Bostock et al., 2012; Chamberlain et al., 2014; Frank et al., 2013; Royer & Bostock, 2014; Shelly 
et al., 2007; Sweet et al., 2014; Tang et al., 2010; Thomas & Bostock, 2015), though some studies apply alterna-
tive network-based approaches (e.g., Frank & Shapiro, 2014; Poiata et al., 2018; Rubin & Armbruster, 2013). 
Network cross-correlation involves taking an LFE waveform and cross-correlating it through continuous 
data. This results in a cross-correlation function for each station and component that are then summed or 
averaged, resulting in a network cross-correlation function. When the network cross-correlation function 
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exceeds a given threshold, typically eight times the median absolute deviation (Shelly et  al.,  2007), the 
corresponding window pairs are considered a detection. Detections are then stacked on each station and 
channel to create a LFE template with a higher signal-to-noise ratio, and the process is repeated. This pro-
duces families of repeating LFEs identified by waveform similarity. An obvious limitation of this method is 
that it requires LFE sources to repeat. If we want to move toward producing a systematic, comprehensive 
characterization of the seismic radiation associated with slow slip and more thoroughly image the slow slip 
source region using LFEs, the detection method employed should be tolerant of repeating and non-repeat-
ing sources alike.

A number of recent studies have shown that machine learning, deep learning in particular, excels at com-
mon tasks in seismology such as earthquake detection and phase picking (e.g., Mousavi et al., 2020; Perol 
et al., 2018; Ross et al., 2018; Yeck et al., 2021; Zhu & Beroza, 2019), phase association (Ross et al., 2019), net-
work operations (Walter et al., 2021), tremor detection (Rouet-Leduc et al., 2020), ground motion prediction 
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Figure 1.  Example inputs and outputs of the convolutional neural network. Panel (a) shows example input data 
from high-resolution seismic network borehole station SMNB. Each trace represents an instance of an low-frequency 
earthquake (LFE) from the same family centered on the S-wave arrival on each component (channel DP1 is the vertical 
whereas DP2 and DP3 are horizontals). Note that the signal-to-noise ratio is low in the individual traces, and it would 
be difficult to identify LFEs from these records. However, when stacked (N = 945) P- and S-waves are visible on all three 
components (dark gray waveform at top). Panel (b) shows three target Gaussian distributions with different standard 
deviations centered on the S-wave arrival.
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(Jozinović et al., 2020; Klimasewski et al., 2020), etc. Deep learning based approaches to earthquake de-
tection and phase identification require large, labeled datasets (e.g., at least several hundred thousand ex-
amples of P-waves, S-waves, and noise) for training; often these datasets are analyst-reviewed phase picks 
cataloged by regional seismic networks. One limitation of applying a model trained on regional earthquakes 
to detect nontraditional seismicity is that the model may not generalize well to types of seismicity that are 
not well represented in the training data set. For example, Yoon (2021) recently showed that a commonly 
employed phase picker, EQ Transformer (Mousavi et al., 2020), failed to detect the January 2020 magnitude 
6.4 earthquake in Puerto Rico, as well as several aftershocks greater than magnitude 3. This is likely because 
earthquake size distributions adhere to the Gutenberg-Richter frequency magnitude distribution and hence 
larger-magnitude earthquakes were not well represented in the training data set (Yeck et al., 2021). Given 
this result, existing earthquake detection algorithms developed using machine learning may not generalize 
well to nontraditional types of seismicity, such as LFEs, that are not represented in the training data.

Here, we use the 2001–2016 LFE catalog of Shelly (2017) from Parkfield, CA to train several variations of a 
U-Net (Ronneberger et al., 2015), a type of convolutional neural network (CNN), to detect LFEs on the deep 
extension of the San Andreas fault (SAF). Individual LFEs in the Shelly (2017) catalog were visually iden-
tified in continuous seismic data, and the LFE catalog was assembled using the network cross-correlation 
approach described above. We demonstrate that the best-performing CNN can detect LFEs in continuous 
seismic data from borehole stations, surface stations, and temporary stations such as nodal seismometers. 
The approach is fast, generalizeable, and has the potential to identify many more LFEs (beyond those rep-
resented in the training data). More complete LFE catalogs may help further elucidate the mechanism(s) 
responsible for slow fault slip.

2.  Data and Methods
We use the catalog of LFEs assembled by Shelly (2017), which contains over 1 million LFEs recorded at 
multiple stations surrounding the central SAF. While this catalog contains only 88 families of events with 
highly similar waveforms, noise is also present in each individual trace, and, as such, each LFE record 
represents a unique piece of training data. For each LFE family, we attempt to download the 1,000 catalog 
events with the largest average template cross correlation values and calculate the S-wave arrival time at 
all stations with high-quality S-wave picks (with a pick quality of good or better assigned by Shelly & Hard-
ebeck, 2010) in the stacked LFE templates located by Shelly and Hardebeck (2010). We download a 30-s 
window of time centered on the S-wave arrival on all three components. For one-component stations, we 
copy the single-component record to the remaining components. These records are then detrended, high-
pass filtered using a corner frequency of 1 Hz, and resampled to a frequency of 100 Hz, if the sample rate is 
not 100 Hz. To train our network to distinguish between LFEs and noise, we download “noise” samples as 
well, which are randomly selected windows from time periods in which no LFEs are present in the catalog. 
These records are processed in the same manner as the LFE records. This process results in a data set of 1.73 
million waveforms recorded on 65 different stations. Example LFE waveforms are shown in Figure 1. Note 
that LFE S-wave arrivals are often not visible in the individual traces (light gray traces in Figure 1a); only 
after stacking do P and S-wave arrivals emerge from the noise (stacked traces are in dark gray in Figure 1a).

After these processing steps, we input three-component seismic data to the model. We use a data generator 
during training, which randomly selects sets of traces from the training data, called batches, and applies the 
following modifications to the data prior to input. First, we randomly select a start time in the first half of 
the window and include only 15 s of data beginning at that time. This has the effect of randomly shifting the 
arrival in time such that it can occur at any time during the window. Second, to account for highly variable 
amplitudes in the training data, we apply a logarithmic transformation to the input data. This transforma-
tion maps each value, x, in the original traces to two numbers: the first is sgn(x), while the second is the 
ln(abs(x) + eps), where eps = 1 × 10−6. This has the effect of normalizing the data such that input amplitudes 
do not vary over orders of magnitude and preserving information on the sign. The data generator supplies 
six channels (three components with a normalized amplitude and sign for each) in batches to the CNN 
during training.
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For our model, we employ a variation of a U-Net architecture (Ronneberger et al., 2015) shown in Table S1 
and Figure S1. Similar architectures have been shown to be successful at earthquake phase identification 
(e.g., Zhu & Beroza, 2019). To explore how variations in network size affect performance, we include two 
additional variations in the network size shown in Table S1. In the first, we increase the number of filters in 
the convolutional layers by a factor of two (called the size 2 network). In the second, we reduce the number 
of filters in the convolutional layers by a factor of two (called the size 0.5 network). For all networks, the 
target output is a Gaussian window centered on the S-wave arrival. Since LFE arrivals are emergent and not 
impulsive, we explore the influence of varying the width (σ, the standard deviation) of the target; we explore 
σ = 0.05, 0.1, 0.2, and 0.4 s. Examples of targets with varying widths, and their alignment with the data, are 
shown in Figure 1b. For noise samples, we also take the 15 s of data beginning at a randomly selected start 
time however the target is set to zero.

We reserve 10% of our data for testing the resulting networks. Each network is trained for 50 epochs using 
Tensorflow (Abadi et  al.,  2016). For all networks, we use the Adam optimization algorithm (Kingma & 
Ba, 2014) with a learning rate of 0.0001 and a binary cross-entropy loss function.

As a simple test, we apply one of our best performing models to three nearby stations near the Cholame 
section of the SAF. The first station, THIS, is a permanent, broadband surface station, the second is a nodal 
seismometer, station 40, deployed near THIS as part of a 3-month temporary experiment in the fall of 2018, 
and the third is a borehole station B079 (Figure 2). We note that data from THIS and 40 was not included 
in our training data set. We select a time period in early August 2018 during which abundant LFE activ-
ity was recorded on stations near the southernmost LFE families shown in Figure 2. From the catalog of 
Shelly (2017), LFE activity during this time was largely confined to the LFE families in the SE section of the 
central SAF (horizontal bar in Figure 2). Families with the highest number of detections are located beneath 
the temporary array, station THIS, and B079, between 20 and 40 km along fault.

For each station, we apply the model to continuous three-component data generating a prediction or output 
functional form for each time window. Since the CNN was designed to output a target Gaussian distribution 
when it is confident that an LFE is present, we define detections as times when a peak with a minimum 
amplitude of 0.1 is present in the CNN prediction. We take the detection time as the time corresponding 
to the peak height and require that detections occur >2 s apart. To compare the CNN results to the LFE 
detections in the same time period, we take all LFEs in the Shelly (2017) catalog from families that locate 
in the southeastern section of the central SAF, determine S-wave travel times between the source and THIS 
using stacked LFE detections or interpolated travel times from Shelly (2017), and add the two to determine 
the arrival time.

3.  Results
The training loss (a measure of misfit on the training data) and validation loss (measure of misfit on the test-
ing data) for all σ = 0.2 s networks are shown in Figure 3a. In machine learning, a balance must be struck 
between allowing the network to be sufficiently large that it can perform effectively, but not so large that 
it becomes overfit and does not generalize to new datasets well. The ratio of validation loss to training loss 
provides a measure of how overfit the network is. Ratios of one are desirable, indicating that the network 
fits the testing data about as well as the training data, whereas ratios significantly greater than one are an 
indicator that the network is likely overfit. Figure 3a shows the training loss and validation loss decrease as 
a function of epochs and begin to plateau around 50 epochs. The size 0.5 network has lower training loss 
and validation loss followed by the size 1 network and the size 2 network. The loss ratio for three networks 
at 50 epochs are all near 1, suggesting that the networks do not suffer significantly from overfitting. After 
exploring other target widths and the influence of a drop layer, we find that the smaller size networks gen-
erally have lower validation loss and loss ratios than the size 2 networks. This suggests they are sufficiently 
complex to perform well without being overfit.

Figure 3b shows the accuracy, precision, and recall for the three different variations of the size 0.5 network. 
We define true positives (TP) as correct signal predictions, true negatives (TN) as correct noise predictions, 
false positives (FP) as incorrect signal predictions, false negatives (FN) as incorrect noise predictions, and 
N = TP + FP + TN + FN as the total number of signal and noise predictions. Accuracy is the fraction of 
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correct model predictions and is defined as (TP + TN)/N. Precision is defined as TP/(TP + FP) and de-
scribes the fraction of positive predictions that are correct. Recall is defined as TP/(TP + FN) and describes 
the fraction of positive instances that are correctly classified. If the maximum values of the model output 
exceeds the decision threshold, we classify the window as signal and otherwise we classify the window as 
noise. Recall decreases as the decision threshold increases, reflecting how increasing the decision threshold 
reduces the fraction of true LFEs that are detected. Increasing precision with decision threshold reflects 
an increasing fraction of true LFEs among the CNN positive predictions. The maximum accuracy for all 
σ = 0.2 snetworks is between 82% and 87%. The accuracy of the σ = 0.05 s network decreases monotonically, 
whereas the σ = 0.1 s, σ = 0.2 s, and σ = 0.4 s networks peak at decision thresholds of 0.02, 0.04, and 0.08, 
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Figure 2.  Map and cross section of the central San Andreas fault (SAF). Upper panel shows regional seismicity 
as black dots, low-frequency earthquake (LFE) locations are color coded by their family ID number (from Thomas 
et al., 2018), station THIS is indicated by a black triangle. White triangles indicate locations of stations that recorded 
LFEs and noise samples used to train the convolutional neural network (CNN). The lower inset shows the location of 
the central SAF. The upper right inset shows the geometry of a subarray of stations, indicated by gray triangles that 
operated as part of a temporary deployment in 2018. The array is nearly colocated with station THIS (THIS is shown 
in black). The data shown in Figure 4b below is from station 40. The cross section shows LFE families and shallow 
seismicity along the SAF going from the NW (left) to SE (right). Black dots are regional seismicity occurring within 
10 km of the SAF. The along-strike extent of the 2018 slow-slip event is denoted by the horizontal bar.
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Figure 3.  Convolutional neural network (CNN) performance metrics. Panel (a) shows the training loss, validation loss, 
and loss ratio (validation loss/training loss) as a function of epoch for the three different size networks for σ = 0.2 s. 
Panel (b) shows the precision, recall, and accuracy as a function of decision threshold for the size 0.5 networks. Panel 
(c) shows a histogram of the picking performance, that is, the difference between the predicted and actual pick, for the 
size 0.5, σ = 0.2 s network. The inset table presents additional picking metrics, that is, the percentage of picks that are 
less than or equal to 10, 30, and 50 samples for the two decision thresholds (DT).
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respectively. Overall, precision, recall, and accuracy are high for all networks at very low decision thresh-
olds, with the size 0.5, σ = 0.4 s having the highest accuracy at a decision threshold of 0.08. Increasing the 
decision threshold has the effect of reducing the number of false positive (i.e., spurious) detections at the 
expense of permitting more false negatives (i.e., missing true LFEs). Distributions of maximum model out-
puts for populations of LFEs and noise windows are shown in Figure S2.

Figure 3c shows the picking performance of the size 0.5, σ = 0.2 s network for two different decision thresh-
olds, 0.5 and 0.75. We chose these relatively high decision thresholds because we only want to assess pick 
performance when the model is very confident there is an LFE present. The inset table shows the fraction 
of picks that are within 10, 30, and 50 samples (0.1, 0.3, and 0.5 s) of the true pick. Picking performance 
improves with higher decision thresholds, that is, the larger decision threshold results in a larger fraction 
of picks within a fixed number of samples. Higher decision thresholds also result in fewer overall picks 
as evidenced by the increased event frequency for a decision threshold of 0.5. After exploring the picking 
performance for all networks we find there is a tradeoff between σ the total number of identified LFEs (i.e., 
TP + FP). The σ = 0.4 s networks generally identify more LFEs but have worse picking performance. Pick-
ing performance improves with decreasing σ but this also results in lower recall and fewer LFEs being iden-
tified overall. As such, our preferred networks are the size 0.5 or 1 networks with, σ = 0.2 s. Performance 
statistics for the 24 networks explored in this study are shown in Table S2.

Figure 4 compares the timing of CNN detections and LFE S-wave arrival times on THIS, the nodal seismom-
eter, and nearby borehole station B079. CNN detections are indicated by colored circles in Figure 4 (where 
the color indicates the CNN output amplitude); LFE arrival times from the Shelly (2017) catalog are shown 
as black diamonds. Data from the east and north components of each station are shown in gray. As shown 
in Figures 4a, 4c, and 4e the CNN has several detections during this time period, many of which coincide 
with known LFE detections. There are also LFE arrivals that are not detected by the model. Lowering the 
decision threshold may result in detecting these known arrivals at the expense of increasing the number of 
false positives. When comparing detections on THIS and B079 to those on 40, shown in Figure 4c, we find 
that the nodal sensor has many fewer daily detections, which are generally lower amplitude, owing to the 
fact that, this is a temporary station that has a higher noise floor, different instrument response, and records 
more environmental signals than the permanent stations used to train the CNN. Some of the CNN detec-
tions registered on THIS and B079 are also detected on station 40, suggesting that event association, which 
would be required to locate LFE sources, could be used to cull false detections. Figures 4b, 4d, and 4f show 
a time period in which the CNN identifies an LFE on all three stations that is not registered in the catalog of 
Shelly (2017). We believe this event is an LFE because it is low amplitude, has a dominant frequency content 
between 4 and 7 hz, typical of LFEs in Parkfield (Thomas et al., 2016), and there is no earthquake in the 
NCEDC catalog at this time. Additional examples of detections are shown in Figures S3–S5.

4.  Discussion
Initially, it was unclear whether the CNN approach to LFE detection would be successful given that the 
underlying signal in each LFE family is similar (facilitating detection via cross-correlation) and because the 
signal-to-noise ratio is extremely low; arrivals are not readily identified on individual traces (Figure 1a). De-
spite these potential limitations, the resulting model has surprisingly good performance. Our preferred net-
works are the size 0.5 or 1, σ = 0.2 s networks because they are not overfit, generally have the lowest training 
and validation loss (Figure 3a), and balance picking performance (Figure 3c) and LFE identification ability 
(Figure 3b). For a decision threshold of 0.04, this network has an accuracy of 85.7%, a recall of 88.8%, and a 
precision of 83.6%. The σ = 0.4 s network has maximum accuracy at a higher decision threshold (0.08) but 
has worse picking performance.

For the networks we present here, peak accuracy occurs at extremely low decision thresholds. Increasing σ 
generally increases the network accuracy (Figure 3b) and the decision threshold at which peak accuracy oc-
curs, but results in worse picking performance. Additionally, the picking performance is inferior to PhaseN-
et, which is unsurprizing given the low signal-to-noise ratios, the emergent onsets of LFEs, and small dif-
ferences between the true LFE arrival time and the catalog time resulting from making picks on stacked 
waveforms and data decimation (see Shelly, 2017). If the CNN approach we present here were to be used to 
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mine continuous seismic data for LFEs, the low decision thresholds required to achieve peak accuracy will 
likely result in a significant number of false detections. Increasing the decision threshold from the value 
used in Figure 4 (0.1) would have the effect of reducing the fraction of false positive detections. However, 
characterizing LFEs, that is, determining locations, focal mechanisms, magnitudes, and other routinely 
cataloged earthquake properties, necessitates association of detections, which will undoubtedly cull many 
of the false detections that do not have consistent move out on stations across the network. Figures S3–S5 
show examples of nearly simultaneous CNN detections on nearby stations suggesting that associating de-
tections may be a viable way to cull false positive picks as would cross-correlation and/or backprojection.

5.  Conclusions
We trained a U-Net to detect LFEs on the Parkfield section of the San Andreas fault using the LFE catalog 
of Shelly  (2017). We show that the resulting network has detection and phase picking capabilities that 
approach those of PhaseNet (Zhu & Beroza, 2019), despite the extremely low-amplitudes and emergent 
onsets of LFEs. We demonstrate that the CNN is able to detect LFEs in continuous seismic data recorded 
on stations that were not used as part of the original training and testing datasets. Additionally, the CNN 
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Figure 4.  Comparison of convolutional neural network (CNN) (size 0.5, σ = 0.2 s) detections with S-wave arrival times during a 10-min-long window. Panels 
(a), (c), and (e) show the east (upper) and north (lower) component recordings on station THIS, the nodal seismometer, and B079 respectively. CNN detections 
for a decision threshold of 0.1 and above are indicated by circles; their color corresponds to the peak amplitude of the CNN output at the time of the detection. 
Computed S-wave arrival times from LFEs in the Shelly (2017) catalog are shown as black diamonds representing five different LFE families. Panels (b), (d), 
and (f) are detailed views (8 s) of the region outlined by the black box in Panels (a), (c), and (e), respectively. An LFE arrival is present that is identified with 
high confidence by the CNN on THIS and lower confidence on the nodal seismometer, but not included in the Shelly (2017) catalog.
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performs well on temporary surface stations despite higher amplitude noise and frequency content that is 
distinct from the regional surface and borehole stations used to train the network.

Machine learning based detection of LFEs, combined with association and network cross-correlation, have 
the potential to dramatically increase the number of LFEs identified in continuous seismic data. This ap-
proach is fast (it takes 42 s to make detections on a full day of data at one station on a 2.3 GHz processor) and 
has the potential to significantly increase the number of identified and verified LFEs owing to its ability to 
identify non-repeating LFEs and operate on data with very low signal-to-noise ratio (Figure 4b). Finally, the 
CNN approach we apply on the SAF could be easily adapted to any region where a sizable LFE catalog has 
been assembled (e.g., Cascadia [Bostock et al., 2012], Mexico [Frank & Shapiro, 2014], New Zealand [Cham-
berlain et al., 2014], and Japan [Kato & Nakagawa, 2020]). In the absence of an established LFE catalog, ma-
chine learning models trained to detect LFEs in other environments, such as the CNN we develop here, may 
generalize well such that they are able to identify LFEs in other tectonic settings (Rouet-Leduc et al., 2020).
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